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W

ABSTRACT

e consider 2-D Earth models consisting of laterally variable layers.

i

Boundaries between layers are described by their depths at a set of nodes and

nterpolated laterally between nodes. Conductivity within each layer is

-

l

described by values at a set of nodes fixed within each layer, and is interpo

ated laterally within each layer. Within the set of possible models of this sort,

r

we iteratively invert magnetotelluric data for models minimizing the lateral

oughness of the layer boundaries, and the lateral roughness of conductivities

-

l

within layers, for a given level of data misfit. This stablizes the inverse prob

em and avoids superfluous detail. This approach allows determining boundary

s

b

positions between geologic units with sharp discontinuities in properties acros

oundaries, while sharing the stability features of recent smooth conductivity

distribution inversions.

We compare sharp boundary inversion results to smooth conductivity dis-

d

tribution inversion results on a numerical example, and on inversion of field

ata from the Columbia River flood basalts of Washington state. In the syn-

i

thetic example, where true positions and resistivities are known, sharp boundary

nversion results determine both layer boundary locations and layer resistivities

-

s

accurately. In inversion of Columbia flood basalt data, sharp boundary inver

ion recovers a model with substantially less internal variation within units, and

e

b

less ambiguity in both the depth to base of the basalts and depth to resistiv

asement.
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INTRODUCTIO

n many instances of interpretation of field data, an investigator may

l

c

suspect that the geology of a field area lends itself to approximation by a mode

onsisting of a few layers of laterally varying thickness and perhaps laterally

y

a

varying conductivities. This kind of model is particularly appropriate for man

reas of current interest in petroleum exploration world wide. Magnetotellurics

d

(MT) are most often considered in petroleum exploration in cases which are

ifficult for seismic imaging. A near surface unit of high resistivity and velo-

t

i

city (salt, basalt, or carbonate) overlying prospective sediments above basemen

s the most common case. In such cases, the geometry of the base of the resis-

tive unit and of the basement surface are primary interpretational goals.

Recent inversions have been successful in finding smoothly varying two-

C

dimensional models fitted to magnetotelluric data (e.g., deGroot-Hedlin and

onstable, 1990, Smith and Booker, 1991 ). These inversions have been expli-

m

citly formulated to minimize some measure of the roughness of a conductivity

odel for some level of squared data misfit. For example, minimizing

)hhh log(σ)
M
J
O

dx dz + β e r e , (1
∂
z
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2where σ(x ,z ) is the conductivity, e r e is the squared data misfit, and β>0 a

h

trade-off parameter, results in a model which is smooth in both vertical and

orizontal directions.

For non-linear problems, such as inversion of 2-D magnetotelluric data,

c

inversions of this sort are generally made iteratively, linearizing about some

urrent model at each iteration, and a sequence of models generated. To avoid

d

f

unnecessary difficulties with non-linearities, inversions are generally starte

rom relatively smooth models and a relatively small value of β . As an inver-

sion progresses, greater emphasis is placed on fitting data by increasing the
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T

value of β , resulting in models with progressively more detailed structures

he underlying assumption is that by varying β slowly enough, changes to the

r

conductivity model will be small enough that equations based on linearization

esult in progressively ‘better’ models, leading to a model smoothest for its

d

level of misfit within a moderate number of iterations. Smooth models fit to

ata generated from models with sharp boundaries may not resolve the posi-

d

tions of boundaries as well as desired. A smoothest model adequately fitting a

ata set makes evident resolution limits of the data set in the sense that, the

s

data by themselves certainly do not require sharper transitions than are found in

uch a model.

However, if a field area is suspected to be comprised of a few relatively

n

a

uniform geologic units with abrupt changes in conductivity between units, the

model parametrized in terms of sharp boundaries between units of differing

n

f

conductivity may be more appropriate. A number of 2-D inversions have bee

ormulated along these lines (e.g., Eysteinsson, 1986, Marcuello-Pascual, et al.,

d

1992). A fairly standard tactic has been to parametrize the location of boun-

aries, to compute partial derivatives of data with respect to parameters, and to

-

s

iteratively invert for changes to the parameters using a damped matrix inver

ion. In such a method, data may not uniquely resolve all desired parameters

-

t

of an inversion: parameter values may depend on implementation in an arbi

rary manner, and resulting models may contain unresolvable details. We

e

r

minimize unresolvable details by explicitly seeking models that minimize th

oughness of the boundaries between units, as well as the roughness of resis-

tivity variations within units.



- 4 -

D

I

METHO

n principal, arbitrarily complicated 2-D models can be developed by speci-

r

b

fying conductivities of different geologic units and specifying positions of thei

oundaries at series of points along the boundaries. In this paper, we restrict

,

w

our attention to models comprised of layers with laterally variable thicknesses

ith layer interface positions specified at n nodes along each interface andn

b l

h

interpolated between nodes. For a model consisting of n layers over a basa

alfspace, each layer interface is specified by its depth at n nodes. The series

o b b n

n

f depths for n interfaces yields an n n long vector m of parameters,

)( z , z , . . . , z , z , . . . , z ) , (2a11 12 1n 21 n n
t

i

n b n

j
t

d

where z is the depth of the j ’th node of the i ’th interface, and superscript

enotes transpose. If conductivities are unknown, n +1 unknown layer and

h j

b

alfspace conductivities σ may be appended to m. For layers with laterally

varying conductivities, we specify the conductivity within each layer at the nn

l

p

nodal positions and interpolate it horizontally, and append these additiona

arameters to m ,

L
I z , . . . , z , . . . , z , log(σ ), . . . , log(σ ), . . . , log(σ ) M

O
, (2b)11 1n n n 11 1n n n

t
n b n n b n

w i jhere σ is the conductivity of the i ’th layer at the j ’th node.

y

c

Once a model parametrization has been chosen, an inversion is specified b

hoosing a functional to minimize. For variable thickness layered models with

h

a

specified layer conductivities one might choose to minimize a functional suc

s

I
J
L dx
hdhhz (x )

M
J
O

dx + . . . +
I
J
L dx
hdhhz (x )

M
J
O

dx + β e r e , (3)1

2

n

2
2

b∫ ∫

i lfor layer boundaries written as continuous functions z (x ) of horizonta
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t

position. For models, specified by a finite number of parameters, such as vec

or (2a), one may approximate derivatives by finite differences, and approxi-

mate integrals by sums. Defining an n .(n −1) by n n roughening matrix Rb n b n

Q
J
J
J
J
J
J
J
J
J
R

as

0
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. . .
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.
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. .
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. . .

−1/∆x

. . .

. . .
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0
0

0
0

H
J
J
J
J
J
J
J
J
J
P

11

12

1 n −1 1 n −1

21 21

n n −1 n n −1

2

11

1

n n

b n b n

w i jith ∆x the horizontal spacing between the j ’th and j +1’th nodes of the i ’th

-interface, then the first n −1 rows of the product Rm approximate the derivan

1 ntive dz /dx along the n −1 segments between the nodes of the first interface,

the next n −1 rows approximate the derivative dz /dx at the n −1 segmentsn 2 n

g

m

along the second interface, and so forth. Weighting the rows of the roughenin

atrix by the corresponding ∆x , would weight the squares of the elementsi j
1⁄2

i j
2 t t m

w

of Rm by the corresponding interval lengths ∆x , so that e Rm e ≡ m R R

ould approximate the sum of integrals in (3). We use a slightly different

R

weighting of approximate derivatives,

=

R
J
J
J
J
J
J
J
J
J
Q 0

0
0
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w

. . .

w
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w
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w

0
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, (5)

11
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1 n −1 1 n −1

21 21

n n −1 n n −1

2

b

11

1

n n

b n b n
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nd choose weights w constant for each interface: w ≡w =w = . . . =w .i j i i 1 i 2 i n −1n

l

p

When laterally varying layer conductivities are included as unknown mode

arameters, as in parametrization (2b), the roughening matrix is extended with

another n n columns and n .(n −1) rows:b n b n

b

c
R =

R
J
Q 0

R

R

0 H
J
P

, (6)

,where R is of the same form as R with a possibly different set of weightsc b

i b cw ′, i =1, . . . , n . The sub-matrix R multiplies layer conductivity parameters

-in the product Rm. The lower n .(n −1) rows of Rm, approximate the horb n

izontal derivative d log(σ)/ dx within the layers. For models with laterally

varying layer conductivities minimizing

e Rm e + β e r e (7)2 2

i i b c ,

a

the relative magnitudes of weights w and w ′, used in forming R and R

ffect the relative importance placed on the smoothness of layer boundaries and

′layer conductivities respectively. The relative magnitudes of weights w , wi i

,

a

and parameter β affect the relative importance placed on model smoothness

nd data fit, respectively.

Magnetotelluric data depends on model parameters non-linearly, so we use

t

r

an iterative approach to minimizing (7). We write measurements of apparen

esistivity and phase at n sites and n frequencies each as an element of an nd

(

s f

obs )
i e

m

long data vector d , and the response of a model m as d. Letting F be th

atrix of data partial derivatives with respect to model parameters evaluated at

some model m with response d , then linearizing about m givesi i i

d i i i−d = F . (m−m ) , (8)

where terms of second order in m−m have been neglected. Writing residualsi
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rof the measured data with respect to model response d as a vecto

r ≡ d −d , (9)

and using linearization (8) gives

(obs )

r = d′ −F m , (10)

where

i

d′≡ d +F m −d (11)

o

(obs )
i i i

n the i ’th iteration. We use this expression for r as a function of m in quan-

ttity (7), e Rm e +β e r e . The minimum of (7) is a stationary point with respec2 2

to perturbations δm: at the minimum the difference between (7) written for

m+δm and r+δr where

r+δr = d′ −F . (m+δm) , (12)i

.

T

and written for m and r, must vanish to first order in δm, for all possible δm

hat is, the coefficient of δm in (7) must vanish. This requirement yields

)(β F F +R R) m = βF d′ . (13i
t

i
t

i
t

F p p por n model parameters, this is an n by n system of equations. We use this

-

t

equation to estimate a new model m at each iteration, based on partial deriva

ives updated about the previous model m . Additional details are given in

Appendix.

i

For very small values of β the matrix on the left side of equation (13)

approaches R R, which is singular for the two examples given above, R=Rt
b

f

R

for parametrization (2a) and equation (6) for parametrization (2b). The rows o

form a set of n .(n −1) linearly independent vectors, so R R has rank

b

b b n
t

nn .(n −1) in the first example, and twice this in the second. In these examples

,R R is an n n or a 2n n square matrix, so has n or 2n zero eigenvaluest
b n b n b b
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The e Rm e term in object function (7) penalizes components of m in the2

t s

o

directions of eigenvectors of large eigenvalues of R R, that is, in the direction

f right singular vectors of large singular values of R. Components of m in

edirections of eigenvectors of zero eigenvalues of R R are undamped. If somt

-

t

of these undamped directions are poorly constrained by the data, as are direc

ions corresponding to eigenvectors of small eigenvalues of F F, inversiont

x

R

results may not be particularly satisfying. We augment the roughening matri

so that R R has fewer zero eigenvalues and (F F + R R/β) fewer undamped

directions.

t t t

For interface depth inversion (parametrization 2a), roughening matrix

R=R is insensitive to the means of the depths to each interface, z /nb ij n

s n b

Σ
ummed over j =1, n for i =1, n . This suggests augmenting R to add some

lpenalty based on mean interface depths. We augment R with n −1 additionab

rows of form

( 0, . . . , 0, −w , . . . , −w , w , . . . , w , 0, . . . , 0) , (14)dz dz dz dz

n o

t

where, in the i ’th additional row, the negative entries multiply the n depths t

he nodes of the i ’th interface and the positive entries multiply the n depths ton

t

d

the nodes of the (i +1)’th interface in the product Rm yielding a weighted firs

ifference between average interface depths in the two layers. With this aug-

rmentation R R only has one remaining zero eigenvalue, and its eigenvectot

corresponds to the mean of all interface depths. This choice of augmentation to

hR introduces a preference for models with the average interface depth in eacb

layer close to those in adjacent layers, that is, a preference for thin layers.

m

Instead of parametrizing the model m in terms of depths to interfaces (2a), one

ay parametrize it in terms of depth below the previous interface, that is, in
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( ∆z , ∆z , . . . , ∆z ) , (15)11 12 n n
t

b n

w i j i j i −1 jhere ∆z ≡ z −z is the thickness of the i ’th layer at the j ’th horizontal

node. In this case, the augmentation to R introduces a preference for uniformb

s

o

average layer thicknesses. Parametrizing the model m in terms of logarithm

f layer thicknesses

L
I log(∆z ), log(∆z ), . . . , log(∆z ) M

O
, (16)11 12 n n

t
b n

allows keeping layer thicknesses positive.

SYNTHETIC DATA EXAMPLE

y

s

We generated 23 sites of TM mode data at 26 frequencies logarithmicall

paced from .001 Hz to 100 Hz, from a simple layered 2-D model, with layer

-

f

boundaries as shown by white lines in Figure 1. The model consists of a sur

ace layer of 300 Ωm (e.g., basalt) over a 20 Ωm layer (e.g., sediments) over a

k

100 Ωm basement at 12 km depth. The surface layer thins from 2.5 km to 0.7

m over a lateral distance of 12 kilometers. The model response was calcu-

u

lated using the same forward modelling code (Wannamaker and Stodt, 1987) as

sed in forward modelling steps within our inversion. To simulate measure-

i

ment errors, five percent Gaussian noise was added to apparent resistivities and

mpedance phases.

In inversion, the model was parametrized in terms of interface depths

log(z ) ( j =1,23), (i =1,2), at nodes directly below the data sites, and, layer andi j

i jbasement conductivities log(σ ) at corresponding nodes ( j =1,23), (i =1,3).
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efault roughening matrix weights w =i and w ′=i were used, placingi i

l

r

increased emphasis on smoothness with increasing depth. Default vertica

oughening weights of w =i /n /10 were used. Equal emphasis was placed on

s

dz n

moothness of conductivity within layers, and smoothness of layer interfaces

(w =w ′ ). A goal of one standard error rms misfit was chosen for inversioni i

corresponding to the noise level in the input data, and this was achieved in the

final iterations of the inversion.

Sharp boundary inversion (SBI) results are shown in the upper part of Fig-

r

ure 1. Layer boundaries are shown in black. The resistivities plotted are those

esulting from projection of our variable thickness variable resistivity layer

A

models onto a fixed finite element mesh used in calculating their responses (see

ppendix). Basalt resistivities (surface layer) are matched within four percent

1

over the length of the profile. The base of this layer is matched to within

50m throughout the model. Sediment resistivities (second layer) are matched

e

m

within five percent within the entire unit, and basement resistivities ar

atched within two percent. The particular result shown was started from a 1-

S

D model with uniform layer resistivities of 200, 160 and 300 Ωm. Starting the

BI inversion from other starting models has given almost identical results, giv-

o

ing some confidence that the algorithm has found a global minimum of the

bject function. However, in inversions such as this, in which model geometry

a

g

is included in the unknown parameters, one expects that local minima may be

reater concern than they seem to be in inversions in which model geometry is

held fixed.

For comparison, the same synthetic data has been inverted using a

,

s

smoothly varying inversion algorithm (deGroot-Hedlin and Constable, 1990)

tarted from a 300 Ωm halfspace resulting in the model show at the bottom of

Figure 1. In addition to the deGroot-Hedlin Constable algorithm, we have
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-

l

extensively used the RRI algorithm of Smith and Booker (1991) and a non

inear conjugate gradient algorithm by Mackie (e.g., Mackie, et al., 1997), both

,

t

of which also invert for smooth conductivity distributions. In our experience

here are three main observations that can be made about smooth inversions of

d

data from models with sharp boundaries, which are illustrated to varying

egrees in Figure 1. First, in smooth inversions of data from models with

d

t

interfaces that vary considerably in depth, different contour intervals correspon

o the actual interface position at different depths: the deeper the interface, the

F

lower the resistivity of the corresponding contour. For example, on the right in

igure 1 (b), the upper interface lies at 720 m depth, between 250 and 350 Ωm

h

b

values in the smooth inversion result, on the left it lies at 2550 m dept

etween 30 and 40 Ωm values in the smooth inversion result. Secondly, smooth

-

t

inversion of data from models with sharp boundaries tend to overshoot resis

ivities on either side of a boundary. In Figure 1 (b), the smooth inversion

0

Ω

results overshoot by about 20%, attaining highs of about 350 Ωm for the 30

m basalt, and lows of about 16 Ωm for the 20 Ωm sediments. Thirdly,

d

smooth inversion results generally have increased smoothing with increasing

epth. In Figure 1 (b), the transition from sediment to basement resistivities is

s

more spread out than the transition from basalt to sediment resistivities in the

mooth inversion results. The data by themselves are unable to resolve whether

t

the transition to basement resistivities is smooth or abrupt. However, assuming

hat the transition is abrupt, as we do in Figure 1 (a), the depth and resistivity

of basement are quite accurately recovered.
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W

FIELD DATA EXAMPL

e will consider magnetotelluric data from a survey line somewhat east of

-

p

Ellensburg, Washington, shown in juxtaposition with topography and inter

reted structure in Figure 2 (line 400). The line consisted of 34 sites, spaced

l

p

242 meters apart with in-line electric field dipoles laid end to end. Origina

rocessing frequencies differ from site to site, so the data was binned to 5 fre-

l

quencies per decade yielding 25 frequencies common to all sites. Line 400 was

aid out as a dip line to be approximately perpendicular to strike. Geo-electric

e

l

strike interpreted from polar diagrams (not shown) varies somewhat along th

ine, but is generally perpendicular to the line direction. We interpret the Z yx

s

p

impedances, with E in-line and B perpendicular, as TM mode data, and it i

lotted in terms of apparent resistivity and phase in Figure 3. Interpreting this

t

r

polarization as 2-D TM mode data, the obvious site to site shifts in apparen

esistivity magnitude can be fit by lateral resistivity variations at the Earth’s

t

e

surface in a 2-D model. Since the data is end to end dipole data, we do no

xpect it to be affected by surface structures much smaller than the site spacing.

c

For want of rigorous impedance variance estimates, we have assumed 10 per-

ent uncertainty in both apparent resistivity and phase data.

e

fl

In the vicinity of the survey, approximately two kilometers of resistiv

ood basalts overlay several kilometers of more conductive sediments, in turn

d

t

overlying a more resistive basement. More details of the geologic setting an

he MT data set are given in Morrison et al. (1996). The depth to the sedi-

f

ments and their thickness are of particular concern as gas deposits have been

ound and exploited within the sediments at other locations in the Columbia

s

o

basin. A two layer over basement model (as in Fig. 1) includes the parameter

f greatest interest. We consider the site to site shifts observed in the line 400

smagnitude data, to be most likely due to lateral variations at the Earth’
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a

d

surface, so add a near surface layer to allow modelling this. Also, we add

eep conductor to allow fitting the low frequency roll-off of apparent resistivi-

ties.

The SBI algorithm was started from a four layer plus basement model with

,

3

interface depths of 0.2, 2, 4 and 11 km. Starting layer resistivities were 300

00, 20, 150 and 20 Ωm. Parameter nodes were below the measurement sites.

S

This yields a total of 136 interface nodes and 170 resistivity nodes. The final

BI inverse model which reached an rms misfit of 2.0 standard errors is shown

e

u

in Figure 4. The upper two layers comprise the basalt flow sequence with th

pper part more conductive (∼∼ 100 Ωm) than the lower part (∼∼ 300 Ωm). The

e

s

increased conductivity is consistent with expected effects of weathering near th

urface. The sediments are represented by the third layer with resistivities

.

T

ranging from 3 to 28 Ωm. Basement resistivities range from 80 to 300 Ωm

he deep conductor (not shown) averaged 5 Ωm with an average depth of 15

s

s

km. Inversion model response and input data are plotted together in x-y plot

ite by site in Figures 5 and 6.

For comparison, we inverted the same data set using the deGroot-Hedlin

.

S

and Constable (1990) smooth conductivity distribution inversion algorithm

tarted from a 300 Ωm halfspace the algorithm resulted in a model with an rms

S

misfit of 1.9 standard errors, shown in Figure 7. We have superimposed the

BI inverse layer boundary positions. Differences between the two models

-

t

underscore the difficulties involved in making a discrete geologic unit interpre

ation of a smooth conductivity distribution inversion. The deGroot-Hedlin

-

t

Constable smooth inversion shows considerably more lateral variation in resis

ivities, both within the basalts, and within the underlying sediments. One

i

might interpret a somewhat deeper basalt base from the smooth inversion than

s evident in the sharp boundary inversion results (bottom of second layer).
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asement relief is quite consistent between the two inversions, with the smooth

y

i

inversion yielding lower resistivities at a given depth than the sharp boundar

nversion, consistent with the synthetic results in the previous section.

I

CONCLUSION

f relatively little is known about a survey area, interpretation in terms of a

-

s

minimum structure smooth inversion such as those of deGroot-Hedlin and Con

table (1990) or Smith and Booker (1991) quickly allow telling what a data set

s

by itself allows inferring about the study area. The blurriness of a minimum

tructure smooth inversion results gives some idea as to resolution limits of a

-

t

given data set. When a field area is suspected to be made up of a few rela

ively homogeneous units, the positions of boundaries can be recovered more

p

precisely using a sharp boundary inversion. Inverting directly for boundary

ositions in a sharp boundary inversion makes interpretation for structural geol-

ogy easier.

A sharp boundary inversion provides MT interpreters with a tool

m

specifically designed for structural interpretation. By parametrizing inverse

odels in terms of boundaries between units which may possess large contrasts

p

in conductivity, inversions which unambiguously locate such boundaries can be

roduced. In the case of petroleum exploration where the base of a sequence

a

s

of relatively uniform basalt, salt or carbonate is the goal of an MT survey,

harp boundary inversion provides advantages over a smooth inverse model

m

which leaves the interpreter with the need to interprete the smooth inverse

odel for the location of structural interfaces.
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APPENDIX

NON-LINEAR MINIMUM ROUGHNESS INVERSION ALGORITHM

e

m

We approach the minimum of quantity (7) iteratively, starting at som

odel m computing the partial derivative matrix F numerically at m , andi i i

i +1 s

b

solving equation (13) for an estimated new model m̂̂ =m. Equation (13) i

ased on linearization (8), which assumes that the change in the model

m̂̂ −m is small enough to neglect second order terms in m̂̂ −m . We con-i +1 i i +1 i

i +1 l

m

sider an iteration successful if, on computing the response d of a mode

, objective function (7) decreases for the current value of β, that is, ifi +1

i +1
2

i +1
2

i
2

i
2 )

A

e Rm e + β e r e ≤ e Rm e + β e r e . (A-1

s the model where partial derivatives are evaluated, m , may not yet be at ai

1

d

minimum of quantity (7) for any value of β, adjusting β and recomputing m̂̂i +

oes not guarantee that m̂̂ −m can be made small enough that condition (A-

i

i +1 i

+1 i +11) will hold for m =m̂̂ . Taking a partial step in the desired direction by

letting

m = m + α .[m̂̂ −m ] , (A-2)

w

i +1 i i +1 i

ith 0< α ≤1, one can choose α small enough so that condition (A-1) can be

made to hold for m , assuming that equation (13) is non-singular.i +1

Smith and Booker (1988) give a simple criterion for choosing between

e

s

reducing α and reducing β to reduce the step size. In their formulation, th

quared misfit can be written as a function of trade-off parameter β with form

)hhhhhh
M
J
O

, (A-3
γ

λ
e r̂̂ (β) e =

I
J
L 1+βΣi +1

2

k =1

n

k

k
2

k

d

k l

m

(their equation A-9), where λ ≥0 and γ are known, for estimated mode

ˆ̂ (β) considered as a function of β, based on a linearization similar toi +1
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hequation (8). They solve an equation of form (A-3) for the value β whics

i +1 s e

c

linearization predicts should result in the smoothest model m̂̂ (β ) with th

urrent level of misfit e r̂̂ (β ) e = e r e . They divide the model change

i

i +1 s
2

i
2

+1 i i +1 i +1 s i +1 s i .

T

α .[m̂̂ −m ] into two parts, α .[m̂̂ (β)−m̂̂ (β )] and α .[m̂̂ (β )−m ]

he first part is proportional to the difference between an estimated model

m̂̂ (β) with β chosen to attempt to reduce the misfit and the model estimatedi +1

to be the smoothest model with the current misfit, so represents a model

t

a

improvement step. The second part represents a model smoothing step as i

ttempts to smooth the current model without reducing its misfit. When a step

fsize needs to be reduced to lower the object function then, i

e m̂̂ (β)−m̂̂ (β ) e > e m̂̂ (β )−m e the improvement part of the step isi +1 i +1 s i +1 s i

sdiminished by choosing β closer to β , otherwise the entire step size is dimin-

ished by reducing α. We use the same criterion here.

Smith and Booker (1988) derive their equation of form (A-3) for a 1-D

-

t

continuous profile inverse problem. Smith (1988) derives the analogous equa

ion for a minimum roughness discrete inverse such as presented here. Calcula-

tion of coefficients γ and λ involve finding the eigenvectors and eigenvaluesk k

d d i o

s

of an n by n matrix computed from F and R. An alternative method t

olve for β giving a chosen level of estimated squared misfit e r̂̂ (β) e is to

i +1

i +1
2

g

C

solve equation (13) for model estimates m̂̂ (β) for a few values of β usin

holesky decompositions of (βF F +R R), use equation (10) to evaluate their

i

i
t

i
t

+1estimated residuals r̂̂ (β), and interpolate between squared misfit values

fe r̂̂ (β) e using an interpolation function based on a single term of the form oi +1
2

;expansion (A-3)

e r̂̂(β) e ∼∼
I
J
L 1+βλ
h γhhhh

M
J
O

, (A-4)2
2
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.with γ and λ chosen to match the calculated e r̂̂ (β) e at two values of βi +1
2

-

t

Equation (A-4) can be solved for β for desired levels of estimated misfit. Let

ing β and β be two values of β used in the previous iteration, m̂̂ (β ) and

i

i
s
i

i +1
i

+1 s
i

i +1
i d

r

m̂̂ (β ) be corresponding models estimated using equation (13), r̂̂ (β ) an

ˆ̂ (β ) be their respective estimated residuals from equation (10), we interpo-i +1 s
i

i +1
2

s
i +1 d

m

late e r̂̂ (β) e using (A-4), and solve for β yielding an estimated square

isfit e r̂̂ (β ) e equal to the current level of squared misfit e r e . We alsoi +1 s
i +1 2

i
2

g
i +1

w

use interpolating function (A-4) to solve for the reciprocal damping factor β

hich yields an estimated residual e r̂̂ (β ) e equal to the level eventuallyi +1 g
i +1 2

i +1 n

b

desired. The reciprocal damping factor β used in an iteration is chose

etween these. In particular, we choose β based on the scales of R R and

Fi
t

i

i +1 t

F ;

β = ζ . trace(R R) / trace(F F ) , (A-5)

w

i +1 t
i
t

i

here the trace of a matrix is the sum of its diagonal elements, and ζ is an

ζ

i

adjustable parameter. In general, we start with ζ=1 on the first iteration, and

s later adjusted in tandem with α to control the step size, eventually attaining

values giving β = β on later iterations.i +1
g
i +1

In forming equations (11) and (13) at each iteration, we need to compute

ethe partial derivative matrix F . We do this by finite differencing. We usi

subroutines based on the finite element method of Wannamaker and Stodt

.

O

(1987) to solve the electromagnetic induction forward problem on a fixed mesh

ur variable thickness layered models m are projected onto the fixed mesh of

-

m

the finite element grid, and element conductivities assigned in proportion to ele

ent portions within each layer. These subroutines set up linear systems of

equations of form

Ax = b (A-6)
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or each frequency and mode modelled, and factor the coefficient matrix A as

,

b

A=LU where L is lower triangular and U is upper triangular, to solve Ax=b

y solving Lx′=b and Ux=x′. In computing partial derivatives we use the dis-

tributive law to write perturbed systems as

A.(x+δx) = (b+δb) − δA.(x+δx) , (A-7)

or

A.(x+δx) = (b+δb) + b − (A+δA) x − δA δx , (A-8)

where A+δA and b+δb are calculated for a perturbed model m +δm, vectors bi

)

f

and x are from previous calculation of the unperturbed case, and solve (A-8

or x+δx, neglecting the second order term δA δx. This allows solving (A-8)

-

w

using the LU factors of A previously calculated in solving the unperturbed for

ard problem.

Even with reuse of LU factors, computing partial derivatives takes a

l

d

significant amount of time. To save computation, we approximate some partia

erivatives with their values determined in previous iterations (evaluated at pre-

m

vious models). To avoid effects of a systematic ordering of parameters in the

odel vector m, we evaluate the partial derivatives cycling through a set of np

k p p -

o

random orthogonal directions. Letting e , k =1, n be unit vectors in n orthog

nal directions, and Je be the vector of partial derivatives of the data d com-k

k nputed for a small model perturbation δm in direction e , the

F′ = F + (Je − Fe ) e (A-9)k k k
t

p

d

updates the partial derivative matrix in this direction. Cycling through all n

irections results in updating the entire matrix. We update F in approximately

n orthogonal directions per iteration. In addition to these, we also update Fp√dd

i
i

i s
i ein the directions of the most recent improvement step m (β )−m (β ), and th



- 20 -

.orthogonal component of the corresponding smoothing step m (β )−mi s
i

i −1

)

f

In short, after updating the partial derivative matrix, we solve equation (13

or the estimated models m̂̂ (β ) and m̂̂ (β ) for use in solving for β and

g

i +1 s
i

i +1
i

s
i +1

i +1
i +1 s

i +1
i +1

i +1 l

m

β , and then solve for m̂̂ (β ) and m̂̂ (β ). Forming the new mode

through equation (A-2), we solve the full 2-D forward problem for thei +1

i +1 i +1 i +1 w

m

new model m to compute its response d and residual r . If the ne

odel m reduces the object function (satisfies [A-1]), then it is accepted as

t

i +1

he starting point for the next iteration, otherwise the step size is reduced

dthrough α or ζ and F updated in more directions before computing m ani +1

di +1 again. If two successive iterations are successful without decreases in α

or ζ, then α or ζ is increased to increase the size of the next attempted step.
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IGURE CAPTIONS

l

w

Figure (1). (Upper) sharp boundary inversion of data from a 3 ‘layer’ mode

ith sloping interface. Black lines: inversion layer interfaces. White lines: true

.

W

layer interfaces. (Lower) minimum structure smooth inversion of same data

hite lines: position of layer interfaces in true model.

-

p

Figure (2). Location of Columbia basalt data line 400, with respect to topogra

hy (grayscale) and anticlinal structures interpreted from surface geology (solid

F

lines), from Morrison et al. (1996).

igure (3). Columbia basalt line 400, Z impedance data, with E in linexy x

.

F

direction. (Left) apparent resistivity. (Right) phase

igure (4). Sharp boundary inversion of data of Columbia basalt line 400 data.

l

White lines: inversion interface location. Color: resistivity of sharp boundary

ayered model projected onto finite element mesh.

n

(

Figure (5). TM mode apparent resistivity response of sharp boundary inversio

Figure 4) as a function of frequency at individual measurement sites, from top

:

C

to bottom, left to right. Smooth curves: model response. Erratic curves

olumbia basalt line 400 data.

Figure (6). TM mode impedance phase response of sharp boundary inversion

,

l

(Figure 4) as a function of frequency at measurement sites, from top to bottom

eft to right. Smooth curves: model response. Erratic curves: Columbia basalt

F

line 400 data.

igure (7). Minimum structure smooth inversion of Columbia basalt line 400

data. White lines: sharp boundary inversion interface positions from Figure 4.


